
X20407	 Reg. No. :	

Question Paper Code : X 20407

B.E./B.Tech. Degree Examinations, NOVEMBER/DECEMBER 2020
Sixth Semester

Computer Science and Engineering
cs 6660 – compiler design

(Common to Information Technology)
(Regulations 2013)

(Also Common to PTCS 6660 – Compiler Design for B.E. Part-Time –
Fifth Semester – Computer Science and Engineering – Regulations 2014)

Time : Three Hours	M aximum : 100 Marks

Answer all questions

	P art – A		 (10×2=20 Marks)

	 1.	 What is the usage of sentinel in lexical analyzer ? List its advantages.

	 2.	 Construct regular expression for the binary string that starts with 0 and has
odd length or that starts with 1 and has even length.

	 3.	 Consider the following grammar and demonstrate that the grammar is ambiguous
by showing two different parse trees for some string.

		S → AB |aaB
		A → a|Aa
		 B → b

	 4.	 Consider the following grammar :
		S → A
		A → A + A |B++	
		 B → y
		S how a leftmost and rightmost derivation for the string “y + + + y + +”.

	 5.	 Write the semantic action for the production rule of E ->E1 OR M E2.

	 6.	 Translate the arithmetic expression x = (a + b)∗– c/d into quadruples and triples.

X 20407	 -2-	 	 *X20407*

	 7.	 How to perform register assignment for outer loops ?

	 8.	 Write the static single assignment form for the below code segment and write
the minimum number of total variables required for the conversion.

		 x = u – t;

		 y = x ∗ v;

		 x = y + w;

		 y = t – z;

		 y = x ∗ y;

	 9.	 Define static allocations and stack allocations.

	 10.	 Why are quadruples preferred over triples in an optimizing compiler ?

	P art – B		 (5×13=65 Marks)

	 11.	 a)	 i)	 What are the different error recovery strategies in phases of a compiler ?	 (5)

	 ii)	 What are the tools used for constructing a compiler ?	 (8)

(OR)

	 b)	 What do you mean by passes and phases of a compiler ? Explain the various
phases of a compilation with neat diagram.	 (13)

	 12.	 a)	 Draw an NFA and then an equivalent DFA for the regular expression :
(10|01) ∗ |100 and also construct optimized DFA using the subset construction
followed by Hopcroft’s minimization procedure.	 (13)

(OR)

	 b)	 i)	 Discuss the issues involved in designing lexical analyser.	 (8)

	 ii)	 Describe in detail about input buffering.	 (5)

	 13.	 a)	 i)	 Explain dangling-else problem with an example and give the unambiguous
grammar for the same.	 (7)

	 ii)	 Consider the following grammar. Parse the input string “abbcde” using
stack implementation of shift-reduce parser.	 (6)

		S → aABe

		A → Abc | b

		 B → d

(OR)

X20407	 -3-	 X 20407

	 b)	 Construct LL (1) parsing table for the following grammar using FIRST and
FOLLOW set.	 (9)

		S → UVW

		 U→ (S) | aSb |d

		 V → aV| e

		 W → cW | e

		G ive the parsing actions for the input string “(dc)ac”.	 (4)

	 14.	 a)	 Below is a grammar for expressions involving operator + and integer or
floating-point operands. Floating-point numbers are distinguished by having
a decimal point.

			 E -> E + T|T

			 T -> num.num | num

	 i)	G ive an Syntax Directed Definition (SDD) to determine the type of each
term T and expression E.	 (4)

	 ii)	 Extend your SDD of (i) to translate expressions into postfix notation. Use
the binary operator intToFloat to turn an integer into an equivalent float.	 (4)

	 iii)	G ive an SDD to differentiate expressions such as x∗(3∗x + x∗x) involving
the operators + and ∗, the variable x, and constants. Assume that no
simplification occurs, so that, for example, 3 ∗ x will be translated into
3 ∗ 1 + 0 ∗ x. Note : differentiation (x ∗ y) = (x ∗ differentiation(y) +
differentiation(x) ∗ y) and differentiation(x + y) = differentiation(x) +
differentiation(y).	 (5)

(OR)

	 b)	 Write the syntax directed translation scheme with backpatching to generate
three address code for the given grammar.	 (13)

		S → while E do S | begin L end

		L → L; S | S

		 E → E or E | E and E | not E | id

	 15.	 a)	 Discuss in detail the role of dead code elimination and loop optimization
during code optimization of a compiler.	 (13)

(OR)

	 b)	 Explain the issues in code generation phase of a compiler.	 (13)

X 20407	 -4-	 	 *X20407*

	 Part – C		 (1×15=15 Marks)

	 16.	 a)	 Construct CLR (1) parsing table for the following grammar.	 (15)

			A nd prove that it is not SLR (1).

			S → Aa

			S → dAb

			S → dca

			S → cb

			A → c

(OR)

	 b)	 i)	 Construct a Syntax-Directed Translation scheme that translates arithmetic
expressions from infix into postfix notation. Your solution should include
the context-free grammar, the semantic attributes for each of the grammar
symbols and semantic rules. Show the application of your scheme to the
input string “3 ∗ 4 + 5 ∗ 2”.	 (10)

	 ii)	 Use the following code to identify the leader instructions and their
corresponding basic blocks and draw the control flow graph below.	 (5)

	 1)	P : = 0

	 2)	I : = 1

	 3)	P : = P + I

	 4)	I F P < = 60 GOTO (7)

	 5)	P : = 0

	 6)	I : = 5

	 7)	 T1 : = I ∗ 2

	 8)	I : = T1 + 1

	 9)	I F I <= 20 GOTO (3)

	 10)	 K : = P ∗ 3

	
–––––––––––––

